

12 MATHEMATICS METHODS COMMON TEST 3 – Term 1 2016

Integration Techniques

Name:	Marks:	/ 43
 Instructions: External notes are not allowed Duration of test: 40 minutes This test contributes to 6% of the year (school) mark No calculator 		
Full marks may not be awarded to correct answers unless sufficient justification is given.		
1. (3 marks)		
Evaluate $\int_{-\pi}^{\pi} \cos(x/2) dx$		

2. (8 marks)

Determine the following integrals:

(a)
$$\int \frac{3}{x^{-2}} + 4 \, dx$$
 [2]

(b)
$$\int \frac{(4-x)}{\sqrt{x}} dx$$
 [3]

(c)
$$\int \frac{1}{(2x-1)^5} dx$$
 [3]

3. (7 marks)

Evaluate

(a)
$$\frac{d}{dx} \int_{-4}^{x} \sqrt{5t^2 - 3} \ dt$$

[1]

(b)
$$\frac{d}{dx} \int_{-1}^{-x^3} \frac{t}{(t-2)^2} dt$$

[3]

(c)
$$\int_{2x}^{1} \frac{d}{dt} \left[t \sqrt{1 + t^2} \right] dt$$

[3]

4. (5 marks)

Two functions f(x) and g(x) exist such that:

$$\int_{-2}^{0} f(x) dx = 2 \quad \text{and} \quad \int_{1}^{0} g(x) dx = -1$$

(a) Determine which of the following graphs are f(x) and g(x).

(b) Answer true or false for each of the following.

[2]

(i)
$$\int_{-2}^{2} f(x) dx > \int_{-2}^{2} g(x) dx$$

(ii)
$$\int_{0}^{2} f(x) dx > \int_{-2}^{2} f(x) dx$$

(iii)
$$\int_{-2}^{2} g(x) dx > 0$$

5. (3 marks)

The gradient function of a curve is given by $\frac{dy}{dx} = x^2 - 4e^{-2x}$ Find the equation of this curve given it passes through the point (0,3)

6. (7 marks)

- (a) Find an approximation to the area of the region between $y=e^{2x} \ , \ {\rm and \ the \ lines \ } x=0, \ x=3 \ {\rm and \ the \ } x \ {\rm axis \ using \ exact \ values \ and}$
 - (i) 3 left rectangles

[2]

(ii) 3 right rectangles

[1]

(iii) The average of parts (i) and (ii)

[1]

(b) Evaluate using exact values $\int_{0}^{3} e^{2x} dx$

[2]

(c) Explain why the answers in parts (a) and (b) are different.

[1]

7 (5 marks)

Consider A(x) =
$$\int_{-1}^{x} (-t + 1) dt$$

Plot
$$f(t) = -t + 1$$

(a) Find

$$A(-1)$$

(b) Plot the values in part (a) and hence sketch the graph of A(x) for $-1 \le x \le 2$

[1]

(c) Determine the defining rule for (i) A'(x)

(ii)
$$A(x)$$

[2]

8. (5 marks)

(a) Find $\frac{dy}{dx}$ given that $y = x \cos x$ [2]

(b) Use your answer in part (a) to find $\int (x \sin x) dx$ [3]